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Abstract

Event-driven strategies have been used to simulate exactly spiking neural
networks. Previous works are limited to linear integrate-and-¯re neurons.
In this note we extend event driven schemes to a class of nonlinear integrate-
and-¯re models. Results are presented for the quadratic integrate-and-¯re
model with instantaneous or exponential synaptic currents. Extensions to
conductance-based currents and exponential integrate-and-r̄e neurons are
discussed.

1 Introduction

Our current theoretical understanding of the properties of neural systems is
mainly based on numerical simulations from single cell models to neural net-
works. Recent experimental evidence has accumulated whichsuggests that
precise spike-time coding is used in various neuronal systems (VanRullen
et al., 2005). Individual spikes can be highly reliable and precisely timed
with a submillisecond accuracy (Berry et al., 1997; Mainen and Sejnowski,
1995). Synaptic plasticity depends critically on the relative timing of pre-
and postsynaptic spikes; a synapse is strengthened if the presynaptic spike
occurs shortly before the postsynaptic neuron ¯res, and thesynapse is weak-
ened if the sequence of spikes is reversed (Bi and Poo, 1998).It is therefore
important to have accurate numerical schemes to calculate spike times.
Integrate-and-¯re neurons reproduce many features of the neuronal dynam-
ics (Izhikevich, 2003; Tonnelier and Gerstner, 2003; Gerstner and Kistler,
2002) and are widely used in the numerical simulations of spiking neural net-
works. Two strategies have been used for the simulation of integrate-and-¯re
neural networks: time-stepping methods that approximate the membrane
voltage of neurons on a discretized time and event-driven schemes where
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the timings of spikes are calculated exactly. By de¯nition time-stepping ap-
proximations are imprecise and it has been shown that time steps have to
be chosen correctly to reproduce the synchronization properties of networks
of spiking neurons (Hansel et al., 1998). Standard time-stepping algorithms
(Euler, Runge-Kutta) have to be modi¯ed to give an accurate approximation
of ¯ring times (Shelley and Tao, 2001). A fundamental limita tion on the
accuracy of any time-stepping methods is imposed by the smoothness of the
postsynaptic potentials (Shelley and Tao, 2001). High-order time-stepping
algorithms can be constructed only if the onset of postsynaptc conductance
changes has smooth derivatives. Exact simulations avoid these problems.
The name of "exact method" or "exact simulation" means that spike tim-
ings are analytically given or are derived from the analytical formulation of
the membrane potential. Thus it is possible to have an arbitrary precision
(up to the machine precision) of spike timings. This method has become
increasingly popular (Mattia and Giudice, 2000; Makino, 2003; Rochel and
Martinez, 2003; Brette, 2006; Rudolph and Destexhe, 2006) but it applies to
a limited class of neuron models, mainly the linear integrate-and-¯re models.
It is known that the leaky integrate-and-¯re model has some limitations: it
has an unrealistic behavior close to the threshold and reproduces only some
characteristics of conductance based neuron (Fourcaud-Trocm¶e et al., 2003).
More realistic models include nonlinear spike-generating currents that allow
replacement of the strict voltage threshold by a smooth spike initiation zone.
Here we simulate exactly the quadratic integrate-and-¯re neuron (Ermen-
trout and Kopell, 1986). In he quadratic integrate-and-¯re (Q IF) model,
the membrane potential follows

C
dV
dt

= q(V ¡ Vth )2 ¡ I th + I s(t); (1)

where V is the membrane voltage, C is the membrane capacitance,q is
a parameter characterizing the frequency-current responsecurve, I th is the
threshold current and I s is the synaptic current and Vth is the voltage thresh-
old, i.e. the largest steady voltage at which the neuron can be maintained
by a constant input. Without synaptic currents, I s = 0, the QIF neuron
presents two distinct regimes. WhenI th > 0 there are two ¯xed points. The
stable one de¯nes the resting stateVrest of the neuron

Vrest = Vth ¡

s
I th

q
: (2)

The unstable one is the threshold below which trajectories tend towards
in¯nity in ¯nite time that de¯nes the spike time. When I th < 0 the neuron
¯res regularly. This model represents the normal form of anytype I neu-
rons near the saddle-node bifurcation (Ermentrout, 1996; Ermentrout and
Kopell, 1986) and is related to the so-calledµ neuron (Ermentrout, 1996;
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Gutkin and Ermentrout, 1998). Since the quadratic integrate-and-¯re neu-
ron is expected to reproduce the characterisitcs of any typeI neuron close
to bifurcation, it has been widely used as a realistic neuronmodel (Hansel
and Mato, 2001; Latham et al., 2000; Brunel and Latham, 2003;Fourcaud-
Trocm¶e et al., 2003). The action potential is de¯ned as a divergence of the
voltage. In numerical simulations, one has to introduce a cuto® at a ¯nite
voltage Vpeak. After a spike, the membrane potential is instantaneously reset
to Vreset .
The synaptic current I s is induced by presynaptic spikes. An incoming spike
at time t f triggers a postsynaptic current

I s(t) = w ±(t ¡ t f ); (3)

where w is the synaptic weight of the synapse and± is the dirac delta
function. More realistic models use exponential currents

I s(t) = w exp(¡ (t ¡ t f )=¿s); (4)

where ¿s is the synaptic time constant.
An event-driven simulation requires an analytical expression for the mem-
brane potential or, at least, a closed form expression for the ¯ring times.
In many cases a given neuron in the network will not ¯re (its ¯r ing time is
+ 1 ). In such situation the e±ciency of the simulation is improved using a
spike-test, i.e. an algorithm that checks quickly whether a neuron will ¯re.
Note that the e±ciency of the spike-test crucially depends onthe overall
activity of the network.
In this paper, we will describe a method to simulate exactly the quadratic
integrate-and-¯re model (1) with the synaptic currents (3)-(4 ). The mem-
brane potential is solved analytically and a spike-test is derived.

2 Exact simulation

We consider the dimensionless QIF model

dV
dt

= V 2 ¡ I th ; (5)

obtained from (1) by the change of variablesV Ã q(V ¡ Vth )=C and I th Ã
q Ith =C2 (for convenience we do not change the notations). We further
consider an instantaneous synaptic current so thatV ! V+ w when a spike is
received,V ! Vreset when a spike is emitted. We consider excitable neurons
and we take a positive threshold current. In an interval with no spike, i.e.
no incoming spike and no spike emitted by the neuron itself, equation (5)
can be solved analytically with the separation of variablestechnique. The
membrane potential evolves according to

V (t) = ¡
p

I th tanh
³ p

I th (t + c)
´

; (6)
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where c is a constant of integration given by the initial condition V (0) =
¡

p
I th tanh(c

p
I th ). For V (0) <

p
I th the neuron goes back to its resting

value and no spike is emitted. A spike is emitted forV (0) >
p

I th , i.e.
for an initial value greater than the unstable ¯xed point of t he neuron.
In this case, we calculate1 c

p
I th = ¡ atanh(

p
I th =V(0)) + i¼=2. Using

tanh(x + i¼=2) = coth( x) we have

V(t) = ¡
p

I th coth(
p

I th t ¡ atanh(
p

I th =V(0))) : (7)

The ¯ring time is obtained when V(t) crossesVpeak and is explicitly given
using (7). In the limit Vpeak ! 1 the ¯ring time is obtained equaling to
zero the argument of the coth function and is simply given by

t f =
1

p
I th

atanh
p

I th

V(0)
: (8)

An event-driven scheme for a network of QIF neurons with instantaneous
coupling can be easily implemented using (8). The generalization of the
event-based simulation to more realistic synaptic currentsis not trivial.
A network of QIF neurons with exponential current follows th e equations

dV
dt

= V 2 ¡ I th + I s; (9)

¿s
dI s

dt
= ¡ I s: (10)

When a spike is received by a synapse, the currentI s is instantaneously
modi¯ed I s ! I s + w. Excitatory or inhibitory synapses are accounted
through the sign of w provided that they have an identical time constant ¿s.
System (9-10) is analytically solvable in intervals with no spike and V(t) is
expressed using Bessel functions (see Appendix 5.1). Thus we can calculate
very accurately the value of the membrane potential at any time.
It is possible to speed up the simulation if neurons that will not spike are
detected. We will derive a test that quickly check whether a neuron will
spike or not. Depending on the initial conditions V (0) ,I s(0) either a spike
is emitted or the neuron goes back directly to its resting state. There is a
curve V ¤(I s) in the phase plane that de¯nes the threshold curve, i.e. the
neuron spikes if and only if its state is above this curve. Thethreshold curve
is given by the stable variety of the unstable ¯xed point (I s; V ) = (0 ;

p
I th )

(see Fig. A).
When the spike test is positive we need to compute the ¯ring time. This
computation can be done very e±ciently with standard methods of roots
¯nding. These methods require an initial guess. We de¯neV + and V ¡ that

1depending on the initial condition V (0), the constant c can be a complex number
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evolve according to the following di®erential equations

dV+

dt
= VpeakjV + j ¡ I th + I s; (11)

dV ¡

dt
= 2 ²jV ¡ j ¡ ²2 ¡ I th + I s; (12)

where I s follows (10). Here, we have used piecewise linear bounds of the
quadratic nonlinearity (Fig. B, left). ² is an arbitrary parameter and we
choose² = 1. By construction we have, 8t ¸ 0, V ¡ (t) · V (t) · V + (t) (see
Eqs. 9, 11, 12 and Fig. B, right). SinceV + (t) and V ¡ (t) are the membrane
potentials of (piecewise) linear integrate-and-¯re models we can calculate
accurately the times of the threshold crossing (Brette, 2006). These times
give an upper and a lower bound for the ¯ring times of the QIF neuron that
allow an e±cient root ¯nding. However when the network activ ity is high,
the spike-test is most of the time positive and this method becomes time
consuming. Moreover in the high activity regime,V (0) is near the threshold
curve and it is possible to derive a more accurate bound of thēring time.
Another approximation as initial guess is obtained using the bounding QIF

dV+

dt
= V + 2 ¡ I th + max(0; I s(0)) ; (13)

that gives a lower bound for the ¯ring time. Likewise, an upper bound can
be obtained by usingmin (0; I s(0)) in the equation above. The ¯ring time of
the bounding QIF model (13) can be calculated quickly and accuratly using
an equation similar to (8). The comparison with the lower bound given by
the bounding LIF is shown ¯gure C for di®erent values of the synaptic cur-
rent. We calculate the relative error E = jt f ¡ t f

b j=tf where t f is the ¯ring
time of the QIF and t f

b is the approximation given by either the bounding
LIF (11) or the bounding QIF (13), respectively.
There exists a critical value ~V0(I s(0)) of the membrane potential such that
for V > ~V0 the bounding QIF model gives a better approximation of the
¯ring time. Note that for positive values of V0 the bounding QIF model is
always better. This case is achieved when the average activity is high, i.e.
neurons in the network are most of the time near the thresholdcurve.

3 Numerical results

To illustrate our method, we simulate a network of N identical QIF neurons
receiving an external excitatory spike train modeled as a Poisson process
with a constant rate of 10 kHz 2. The QIF neurons are coupled all-to-all

2This mimics the interaction with 1000 excitatory presynaptic neurons ¯ring at 10 Hz
on average
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through GABAergic inhibition. This scenario has been used to reproduce
the oscillatory synchronization observed in early olfactory systems (Mar-
tinez, 2005; Ambard and Martinez, 2006). Numerical values of QIF neu-
rons (Eq. 1) are taken from (Ambard and Martinez, 2006): C = 0 :2 nF,
Vrest = ¡ 65 mV, Vth = -60.68 mV, q = 0 :00643mS:V ¡ 1, I th = 0.12 nA, Vpeak

= 30 mV and Vreset = -70 mv. The synaptic time constant is ¿s = 6ms
and the synaptic strength is w = 0 :05=N for the inhibitory synapses and
w = 5 :10¡ 5 for the excitatory poissonian input.
We wrote our event-driven simulator in C++ based on the event-driven li-
brary MVASpike (Rochel and Martinez, 2003) available at
http://www.comp.leeds.ac.uk/olivierr/mvaspike. The Be ssel functions needed
for the exact computation of V (t) (see appendix 5.1) were implemented by
using the GNU Scientic Library (http://www.gnu.org/softw are/gsl). The
threshold curve de¯ning the spike test was very accurately t̄ted by a poly-
nomial of degree three. Each time the spike test is positive,the ¯ring time is
computed by ¯nding the root of V (t) ¡ Vpeak. This is accomplished by a few
steps of a Newton-Raphson method starting from an initial guess obtained
from the bounding QIF (Eq. 13). The precision achieved in thesimulations
is in the order of 10¡ 7 ms.
We ¯rst simulate a network of N = 100 neurons. Initial conditions of the
membrane potentials V (0) are taken randomly between Vreset and Vpeak

so that the ¯ring times of uncoupled neurons are uniformly distributed.
This way, the network starts in a completely desynchronizedstate. When
inhibition is blocked, individual neurons ¯re at 380 Hz on average (see Figure
D, left for the spike raster of the ¯rst 100 ms of the simulation). The
simulation time was about 20 min for 1 sec of biological time on a portable
PC running Linux at 1.86 GHz. This is a reasonnable time in regards to the
large number of events encountered during the simulation (in the order of
106). Moreover, we found that the spike test is positive 100% of the time so
that any event from the poissonian input requires spike timing computation
of the N QIF neurons. When lateral inhibition is taken into account, the
spike test is positive in 50% of the cases and neurons are synchronized with
precise spiking activity at about 10Hz (see Figure D, right). In such a case,
all neurons ¯re almost at the same time.
Rather than searching for the next ¯ring time within the enti re population
of neurons at each occurance of an event, it might be su±cientto perform
the search among a random subset ofk neurons. This leads to a considerable
speedup ask << N , albeit at a cost of introducing errors in the simulation.
A similar probabilistic speedup has been used in kernel methods (Scholkopf
and Smola, 2002). In Appendix 5.3, it is shown that the error probability 3

is given by 0:95k for any N . Therefore, a subset of 59 neurons is already

3de¯ned as the probability that the ¯ring time computed with the prob abilistic speedup
is greater than the 5% ¯rst ¯ring times of the entire population of neuron s.
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su±cient to get a low error probability. For k = 59, the error probability
equals 0:05 which is small enough to not perturb the synchronization as
shown in Figure E, left for a network of N = 1000 neurons coupled all-
to-all (106 synapses). For the sake of comparison, Figure E, right shows
the dynamics obtained by simulating the same network with k = 30 (error
probability of 0 :21).

4 Discussion

Due to its simple dynamics the behavior exhibited by the leaky integrate-
and-¯re model is limited. The QIF model has seen increasing interest
in recent years, primarily because it reproduces the properties of detailed
conductance-based neurons near the threshold. At low ¯ring rate, the re-
sponse of any type I neuron is described by the QIF neuron. In particular
the QIF model reproduces the f-I curve of any type I neurons near the
threshold. We have proposed a method to simulate the QIF neuron in an
event driven way. We have presented simulations of the quadratic integrate-
and-¯re model with exponential synaptic currents.
In the numerical simulation of neural networks it is di±cult to predict if er-
rors on ¯ring times will create numerical artefacts or will r emain irrelevant.
Event-driven methods are more precise than traditional time-stepping inte-
gration algorithms because the spike timings are calculated with an arbitrary
desired precision. In general, implementation of an event-driven method re-
quire non-linear root-¯nding algorithms, for instance the Newton-Raphson
method which converges exponentially. Thus calculations are exact in the
sense that the limit of the computer accuracy is reached withfew iterations
of the method. The error done with Euler or Runge-Kutta methods is fun-
damentally di®erent. It is inherent to these approximated methods and the
precision is ¯xed with a polynomial decreasing with respectto the time-
step. However when the number of events is large, event-driven schemes
are time-consuming. This issue is implementation dependentand, in par-
ticular, depends on how the event queue is performed. Another important
limitation of exact simulations is that it cannot be applied to any model.
Implementation of exact simulations is possible if the membrane equations
are analytically solvable. Extensions of our event driven scheme to other
types of synaptic connections or spike-generating currentshave to be stud-
ied case-by-case :

² A QIF neuron with exponential conductance-based synaptic currents
follows

dV
dt

= V 2 ¡ I th + g(V ¡ Es);

¿s
dg
dt

= ¡ g;
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where g and Es is the synaptic conductance and the synaptic rever-
sal potential, respectively. The membrane voltage is analytically solv-
able and can be written using Whittaker functions (see Appendix 5.2).
Thus, an event-driven scheme, similar to the one proposed in this note,
can be used to simulate exactly QIF neurons with synaptic conduc-
tances.

² The recently proposed exponential integrate-and-¯re (EIF) model (Fourcaud-
Trocm¶e et al., 2003; Brette and Gerstner, 2005) is given by

dV
dt

= ¡ (V + E) + eV ; (14)

whereV and t are normalized variables andE = ( VT ¡ E l )=¢ T with VT

a threshold voltage, E l the leak potential, ¢ T the spike slope factor.
Like the QIF model, the EIF model has a soft threshold. However the
spike-generating current is no longer quadratic but exponential. It has
been shown that the f-I curve of the EIF model matches the f-I curve of
detailed conductance-based models for a range of input currents larger
than for the QIF model. The EIF model with instantaneous current
(3) has an implicit solution and the ¯ring time is given by

t f =
Z Vpeak

V (0)

du
¡ (u + E) + eu ;

for V (0) greater than the unstable ¯xed point of (14). As for the QI F
neuron, Vpeak controls the shape of the spikes. It is possible to use
precalculated tables with an arbitrary precision for the integral for
an event-driven simulation of the EIF model. We do not know if the
EIF model with exponential currents is analytically tracta ble or if an
implicit solution can be found.

5 Appendices

5.1 The QIF with exponential synaptic current

The QIF neuron with an exponential synaptic current can be rewritten as
a nonlinear and nonautonomous di®erential equation

dV
dt

= V 2 ¡ I th + I s(0)e¡ t=¿s : (15)

The ¯rst step is to transform (15) into a linear ODE. We use the change of
variables

V (t) = ¡
1

y(t)
dy
dt

;
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to obtain

d2y
dt2 = ( ¡ I th + I s(0)e¡ t=¿s )y(t): (16)

We use the change of variablesu(t) = 2 ¿s
p

I s(0)e¡ t=(2¿s ) which transforms
the equation into

u2 d2y
du2 + u

dy
du

+ ( u2 ¡ 4¿2
s I th )y = 0 : (17)

Let J®(x) and Y®(x) be the two independant solutions of the so-called
Bessel's equation

u2 d2y
du2 + u

dy
du

+ ( u2 ¡ ®2)y = 0 ;

where ® = ¡ 2¿s
p

I th . We have

y(u) = J®(u) + cY®(u);

where c is a constant de¯ned by the initial condition. Using

dJ®(u)
du

= ¡ J®+1 (u) +
®
u

J®(u);

and a similar equation for Y® we ¯nd that the membrane potential of the
QIF neuron with exponential synaptic current (9-10) is analytically solvable.
The membrane potential is given by

V(t) = ¡
p

I th ¡
u(t)
2¿s

J®+1 + cY®+1

J® + cY®
:

where J and Y are Bessel functions evaluated atu(t) = 2 ¿s
p

I s(0)e¡ t=(2¿s ) .
The Bessel functions can be expressed as a series of Gamma functions. Note
that calculations with in¯nite series are not fundamentall y di®erent from
calculating non-polynomial functions (like the exponential or logarithmic
functions). Numerically, the ¯rst terms of the serie are necessary to reach
a good precision. It is also possible to use precalculated tables to speed up
the calculations.

5.2 The QIF with exponential synaptic conductance

The analytical integration of the QIF with exponential syna ptic conductance
proceeds along the same lines as the integration of the QIF with exponential
currents. The analytical expression of the membrane potential uses Whit-
taker functions instead of Bessel functions. More precisely, let W¹;º (x) and
M ¹;º (x) the Whittaker functions, the solutions of the di®erential equation

d2y
dx2 +

µ
¡

1
4

+
¹
x

+
1=4 ¡ º 2

x2

¶
y = 0 :
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The membrane potential of the QIF model with exponential synaptic con-
ductance is given by

V(t) = 1 =(cW®;¯ + M ®;¯ ) ¤ (EsM ®;¯ + (
p

I th ¡ Es)M ®¡ 1;¯ + : : :

+ cEsW®;¯ + c¿s(E 2
s ¡ I th )W®¡ 1;¯ );

where W and M are Whittaker functions evaluated at u(t) = ¿sI s(0)e¡ t=¿s ,
® = 1=2 + ¿sEs, ¯ = ¿s

p
I th and c is a constant de¯ned by the initial

condition. Whittaker functions have power series expansions that could be
used to enhance the e±ciency of the calculations.

5.3 The probabilistic speedup

Advancing the event-driven simulation to the next ¯ring time requires the
computation of the ¯ring times of the N neurons. This can be very time-
consuming asN is large. In case of synchronization, the neurons ¯re almost
at the same time and it might be su±cient to compute the ¯ring t imes t i ,
i = 1 ¢ ¢ ¢k, among a random subset ofk neurons and advance the simulation
to the next ¯ring time min( t i ) obtained from this subset. This leads to a
considerable speedup ask << N , albeit at a cost of introducing errors in
the simulation. We de¯ne the error probability pe as the probability that
min( t i ) is greater than the 5% ¯rst ¯ring times of the entire populat ion of
neurons. We then havepe = P(min( t i ) > t ?) where t? is the maximum of
the 5% ¯rst ¯ring times of the N neurons. Considering thet i s as identi-
cally and independently distributed ¯ring times, we have pe = ( P(t i > t ?)) k .
Moreover, P(t i < t ?) = 0 :05 because we have considered the 5% ¯rst ¯ring
neurons in the de¯nition of t?, and thus pe = 0 :95k .
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Figure Legend.

A. The ( I s; V )-phase plane for the QIF neuron with exponential synaptic
currents. The V-nullcline is shown (bell-shape curve). The stable manifold
of the saddle-node point (0;

p
I th ) de¯nes the threshold curve above which

the neuron ¯res. Trajectories starting under the threshold curve tend to-
ward the stable resting state (0; ¡

p
I th ).

B. (left) Piecewise linear sector bounds on the nonlinearity. The nonlinearity
is shown in full line. The dashed lines show piecewise linearsector bounds.
(right) Bounding of the membrane potential of the quadratic integrate-and-
¯re neuron using piecewise linear integrate-and-¯re models.Parameters are
Vpeak = 3, I th = 2.

C. The relative error on the spike timing of the QIF as a function of the initial
value of the membrane potentialV0 for di®erent values of the initial synaptic
current. Comparison is done between the approximation obtained by the
bounding LIF (bLIF) and by the bounding QIF (bQIF). (left) I s(0) = 5.
(middle) I s(0) = 7. (right) I s(0) = 10. Other parameters are those of B.

D. Event-driven simulations of a network of QIF neurons (N = 100 neu-
rons). (left) Spike trains produced without inhibition. (r ight) Spike trains
produced with lateral inhibition (10 4 synapses).

E. Event-driven simulations of a fully connected network of QIF neurons
(N = 1000 neurons, 106 synapses). (left) Simulation with probabilistic
speedup (k = 59). (right) Simulation with probabilistic speedup ( k = 30).
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